Title: | Ab Initio Uncertainty Quantification |
---|---|
Description: | Uncertainty quantification and inverse estimation by probabilistic generative models from the beginning of the data analysis. An example is a Fourier basis method for inverse estimation in scattering analysis of microscopy videos. It does not require specifying a certain range of Fourier bases and it substantially reduces computational cost via the generalized Schur algorithm. See the reference: Mengyang Gu, Yue He, Xubo Liu and Yimin Luo (2023), <doi:10.48550/arXiv.2309.02468>. |
Authors: | Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre] |
Maintainer: | Mengyang Gu <[email protected]> |
License: | GPL (>= 3) |
Version: | 0.5.3 |
Built: | 2024-10-31 03:06:12 UTC |
Source: | https://github.com/cran/AIUQ |
Fast parameter estimation in scattering analysis of microscopy for anisotropic processes, using AIUQ method.
aniso_SAM( intensity = NA, intensity_str = "T_SS_mat", pxsz = 1, sz = c(NA, NA), mindt = 1, AIUQ_thr = c(1, 1), model_name = "BM", sigma_0_2_ini = NaN, param_initial = NA, num_optim = 1, msd_fn = NA, msd_grad_fn = NA, num_param = NA, uncertainty = FALSE, M = 50, sim_object = NA, msd_truth = NA, method = "AIUQ", index_q_AIUQ = NA, message_out = TRUE, square = FALSE )
aniso_SAM( intensity = NA, intensity_str = "T_SS_mat", pxsz = 1, sz = c(NA, NA), mindt = 1, AIUQ_thr = c(1, 1), model_name = "BM", sigma_0_2_ini = NaN, param_initial = NA, num_optim = 1, msd_fn = NA, msd_grad_fn = NA, num_param = NA, uncertainty = FALSE, M = 50, sim_object = NA, msd_truth = NA, method = "AIUQ", index_q_AIUQ = NA, message_out = TRUE, square = FALSE )
intensity |
intensity profile. See 'Details'. |
intensity_str |
structure of the intensity profile, options from ('SST_array','S_ST_mat','T_SS_mat'). See 'Details'. |
pxsz |
size of one pixel in unit of micron, 1 for simulated data |
sz |
frame size of the intensity profile in x and y directions, number of pixels contained in each frame equals sz_x by sz_y. |
mindt |
minimum lag time, 1 for simulated data |
AIUQ_thr |
threshold for wave number selection, numeric vector of two elements with values between 0 and 1. See 'Details'. |
model_name |
fitted model, options from ('BM','OU','FBM','OU+FBM', 'user_defined'), with Brownian motion as the default model. See 'Details'. |
sigma_0_2_ini |
initial value for background noise. If NA, use minimum value of absolute square of intensity profile in reciprocal space. |
param_initial |
initial values for param estimation. |
num_optim |
number of optimization. |
msd_fn |
user defined mean squared displacement(MSD) structure, a
function of parameters and lag times. NA if |
msd_grad_fn |
gradient for user defined mean squared displacement
structure. If |
num_param |
number of parameters need to be estimated in the intermediate scattering function, need to be non-NA value for user_defined' model. |
uncertainty |
a logical evaluating to TRUE or FALSE indicating whether parameter uncertainty should be computed. |
M |
number of particles. See 'Details'. |
sim_object |
NA or an S4 object of class |
msd_truth |
true MSD or reference MSD value. |
method |
methods for parameter estimation, options from ('AIUQ', 'DDM'). |
index_q_AIUQ |
index range for wave number when using AIUQ method. See 'Details'. |
message_out |
a logical evaluating to TRUE or FALSE indicating whether or not to output the message. |
square |
a logical evaluating to TRUE or FALSE indicating whether or not to crop the original intensity profile into square image. |
For simulated data using aniso_simulation
in AIUQ package, intensity
will be automatically extracted from aniso_simulation
class.
By default intensity_str
is set to 'T_SS_mat', a time by spacespace
matrix, which is the structure of intensity profile obtained from
aniso_simulation
class. For intensity_str='SST_array'
, input intensity profile should be a
space by space by time array, which is the structure from loading a tif file.
For intensity_str='S_ST_mat'
, input intensity profile should be a
space by spacetime matrix.
By default AIUQ_thr
is set to c(1,1)
, uses information from all
complete q rings. The first element affects maximum wave number selected,
and second element controls minimum proportion of wave number selected. By
setting 1 for the second element, if maximum wave number selected is less
than the wave number length, then maximum wave number selected is coerced to
use all wave number unless user defined another index range through index_q_AIUQ
.
If model_name
equals 'user_defined', or NA (will coerced to
'user_defined'), then msd_fn
and num_param
need to be provided
for parameter estimation.
Number of particles M
is set to 50 or automatically extracted from
simulation
class for simulated data using simulation
in AIUQ
package.
By default, using all wave vectors from complete q ring for both AIUQ
,
unless user defined index range through index_q_AIUQ
.
Returns an S4 object of class aniso_SAM
.
Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]
Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.
Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.
Cerbino, R., & Trappe, V. (2008). Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Physical review letters, 100(18), 188102.
library(AIUQ) # Example 1: Estimation for simulated data set.seed(1) aniso_sim = aniso_simulation(sz=100,len_t=100, model_name="BM",M=100,sigma_bm=c(0.5,0.3)) show(aniso_sim) plot_traj(object=aniso_sim) aniso_sam = aniso_SAM(sim_object=aniso_sim, model_name="BM",AIUQ_thr = c(0.999,0)) show(aniso_sam) plot_MSD(aniso_sam,msd_truth = aniso_sam@msd_truth)
library(AIUQ) # Example 1: Estimation for simulated data set.seed(1) aniso_sim = aniso_simulation(sz=100,len_t=100, model_name="BM",M=100,sigma_bm=c(0.5,0.3)) show(aniso_sim) plot_traj(object=aniso_sim) aniso_sam = aniso_SAM(sim_object=aniso_sim, model_name="BM",AIUQ_thr = c(0.999,0)) show(aniso_sam) plot_MSD(aniso_sam,msd_truth = aniso_sam@msd_truth)
S4 class for fast parameter estimation in scattering analysis of microscopy
for anisotropic processes, using either AIUQ
or DDM
method.
pxsz
numeric. Size of one pixel in unit of micron with default value 1.
mindt
numeric. Minimum lag time with default value 1.
sz
vector. Frame size of the intensity profile in x and y directions, number of pixels contained in each frame equals sz_x by sz_y.
len_t
integer. Number of time steps.
len_q
integer. Number of wave vector.
q
vector. Wave vector in unit of um^-1.
d_input
vector. Sequence of lag times.
B_est_ini
numeric. Estimation of B. This parameter is determined by the noise in the system. See 'References'.
A_est_ini
vector. Estimation of A(q). Note this parameter is determined by the properties of the imaged material and imaging optics. See 'References'.
I_o_q_2_ori
vector. Absolute square of Fourier transformed intensity profile, ensemble over time.
q_ori_ring_loc_unique_index
list. List of location index of non-duplicate values for each q ring.
model_name
character. Fitted model, options from ('BM','OU','FBM','OU+FBM', 'user_defined').
param_est
matrix. Estimated parameters contained in MSD.
sigma_2_0_est
vector. Estimated variance of background noise.
msd_est
matrix. Estimated MSD.
uncertainty
logical. A logical evaluating to TRUE or FALSE indicating whether parameter uncertainty should be computed.
msd_truth
matrix. True MSD or reference MSD value.
sigma_2_0_truth
vector. True variance of background noise, non NA for
simulated data using simulation
.
param_truth
matrix. True parameters used to construct MSD, non NA for
simulated data using aniso_simulation
.
index_q
vector. Selected index of wave vector.
I_q
matrix. Fourier transformed intensity profile with structure 'SS_T_mat'.
AIC
numeric. Akaike information criterion score.
mle
numeric. Maximum log likelihood value.
msd_x_lower
vector. Lower bound of 95% confidence interval of MSD in x directions.
msd_x_upper
vector. Upper bound of 95% confidence interval of MSD in x directions.
msd_y_lower
vector. Lower bound of 95% confidence interval of MSD in y directions.
msd_y_upper
vector. Upper bound of 95% confidence interval of MSD in y directions.
param_uq_range
matrix. 95% confidence interval for estimated parameters.
Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]
Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.
Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.
Cerbino, R., & Trappe, V. (2008). Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Physical review letters, 100(18), 188102.
Simulate anisotropic 2D particle movement from a user selected stochastic process, and output intensity profiles.
aniso_simulation( sz = c(200, 200), len_t = 200, M = 50, model_name = "BM", noise = "gaussian", I0 = 20, Imax = 255, pos0 = matrix(NaN, nrow = M, ncol = 2), rho = c(0.95, 0.9), H = c(0.4, 0.3), sigma_p = 2, sigma_bm = c(1, 0.5), sigma_ou = c(2, 1.5), sigma_fbm = c(2, 1.5) )
aniso_simulation( sz = c(200, 200), len_t = 200, M = 50, model_name = "BM", noise = "gaussian", I0 = 20, Imax = 255, pos0 = matrix(NaN, nrow = M, ncol = 2), rho = c(0.95, 0.9), H = c(0.4, 0.3), sigma_p = 2, sigma_bm = c(1, 0.5), sigma_ou = c(2, 1.5), sigma_fbm = c(2, 1.5) )
sz |
frame size of simulated image with default |
len_t |
number of time steps with default 200. |
M |
number of particles with default 50. |
model_name |
stochastic process simulated, options from ('BM','OU','FBM','OU+FBM'), with default 'BM'. |
noise |
background noise, options from ('uniform','gaussian'), with default 'gaussian'. |
I0 |
background intensity, value between 0 and 255, with default 20. |
Imax |
maximum intensity at the center of the particle, value between 0 and 255, with default 255. |
pos0 |
initial position for M particles, matrix with dimension M by 2. |
rho |
correlation between successive step and previous step in O-U
process, in x, y-directions. A vector of length 2 with values between 0 and 1,
default |
H |
Hurst parameter of fractional Brownian Motion, in x, y-directions.
A vector of length 2, value between 0 and 1, default |
sigma_p |
radius of the spherical particle (3sigma_p), with default 2. |
sigma_bm |
distance moved per time step of Brownian Motion,
in x,y-directions. A vector of length 2 with default |
sigma_ou |
distance moved per time step of Ornstein–Uhlenbeck process,
in x, y-directions. A vector of length 2 with default |
sigma_fbm |
distance moved per time step of fractional Brownian Motion,
in x, y-directions. A vector of length 2 with default |
Returns an S4 object of class anisotropic_simulation
.
Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]
Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.
Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.
Cerbino, R., & Trappe, V. (2008). Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Physical review letters, 100(18), 188102.
library(AIUQ) # ------------------------------------------------- # Example 1: Simple diffusion for 200 images with # 200 by 200 pixels and 50 particles # ------------------------------------------------- aniso_sim_bm = aniso_simulation() show(aniso_sim_bm) # ------------------------------------------------- # Example 2: Simple diffusion for 100 images with # 100 by 100 pixels and slower speed # ------------------------------------------------- aniso_sim_bm = aniso_simulation(sz=100,len_t=100,sigma_bm=c(0.5,0.1)) show(aniso_sim_bm) # ------------------------------------------------- # Example 3: Ornstein-Uhlenbeck process # ------------------------------------------------- aniso_sim_ou = aniso_simulation(model_name="OU") show(aniso_sim_ou)
library(AIUQ) # ------------------------------------------------- # Example 1: Simple diffusion for 200 images with # 200 by 200 pixels and 50 particles # ------------------------------------------------- aniso_sim_bm = aniso_simulation() show(aniso_sim_bm) # ------------------------------------------------- # Example 2: Simple diffusion for 100 images with # 100 by 100 pixels and slower speed # ------------------------------------------------- aniso_sim_bm = aniso_simulation(sz=100,len_t=100,sigma_bm=c(0.5,0.1)) show(aniso_sim_bm) # ------------------------------------------------- # Example 3: Ornstein-Uhlenbeck process # ------------------------------------------------- aniso_sim_ou = aniso_simulation(model_name="OU") show(aniso_sim_ou)
S4 class for anisotropic 2D particle movement simulation.
intensity
should has structure 'T_SS_mat', matrix with dimension
len_t
by sz
sz
.
pos
should be the position matrix with dimension
M
len_t
. See bm_particle_intensity
,
ou_particle_intensity
, fbm_particle_intensity
,
fbm_ou_particle_intensity
.
sz
vector. Frame size of the intensity profile, number of pixels
contained in each frame equals sz[1]
by sz[2]
.
len_t
integer. Number of time steps.
noise
character. Background noise, options from ('uniform','gaussian').
model_name
character. Simulated stochastic process, options from ('BM','OU','FBM','OU+FBM').
M
integer. Number of particles.
pxsz
numeric. Size of one pixel in unit of micron, 1 for simulated data.
mindt
numeric. Minimum lag time, 1 for simulated data.
pos
matrix. Position matrix for particle trajectory, see 'Details'.
intensity
matrix. Filled intensity profile, see 'Details'.
num_msd
matrix. Numerical mean squared displacement (MSD).
param
matrix. Parameters used to construct MSD.
theor_msd
matrix. Theoretical MSD.
sigma_2_0
vector. Variance of background noise.
Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]
Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.
Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.
Cerbino, R., & Trappe, V. (2008). Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Physical review letters, 100(18), 188102.
Compute observed dynamic image structure function (Dqt) using object of
SAM
class.
get_dqt(object, index_q = NA)
get_dqt(object, index_q = NA)
object |
an S4 object of class |
index_q |
wavevector range used for computing Dqt |
A matrix of observed dynamic image structure function with dimension
len_q
by len_t-1
.
Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]
Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.
Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.
Cerbino, R., & Trappe, V. (2008). Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Physical review letters, 100(18), 188102.
## Not run: library(AIUQ) sim_bm = simulation(len_t=100,sz=100,sigma_bm=0.5) show(sim_bm) sam = SAM(sim_object = sim_bm) show(sam) Dqt = get_dqt(object=sam) ## End(Not run)
## Not run: library(AIUQ) sim_bm = simulation(len_t=100,sz=100,sigma_bm=0.5) show(sim_bm) sam = SAM(sim_object = sim_bm) show(sam) Dqt = get_dqt(object=sam) ## End(Not run)
Compute empirical intermediate scattering function (ISF) using object of
SAM
class.
get_isf(object, index_q = NA, msd_truth = NA)
get_isf(object, index_q = NA, msd_truth = NA)
object |
an S4 object of class |
index_q |
wavevector range used for computing ISF |
msd_truth |
true or reference MSD |
A matrix of empirical intermediate scattering function with dimension
len_q
by len_t-1
.
Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]
Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.
Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.
Cerbino, R., & Trappe, V. (2008). Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Physical review letters, 100(18), 188102.
## Not run: library(AIUQ) sim_bm = simulation(len_t=100,sz=100,sigma_bm=0.5) show(sim_bm) sam = SAM(sim_object = sim_bm) show(sam) ISF = get_isf(object=sam) ## End(Not run)
## Not run: library(AIUQ) sim_bm = simulation(len_t=100,sz=100,sigma_bm=0.5) show(sim_bm) sam = SAM(sim_object = sim_bm) show(sam) ISF = get_isf(object=sam) ## End(Not run)
Compute modeled dynamic image structure function (Dqt) using object of
SAM
class.
modeled_dqt(object, index_q = NA, uncertainty = FALSE)
modeled_dqt(object, index_q = NA, uncertainty = FALSE)
object |
an S4 object of class |
index_q |
wavevector range used for computing Dqt |
uncertainty |
logic evalution |
A matrix of modeled dynamic image structure function with dimension
len_q
by len_t-1
.
Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]
Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.
Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.
Cerbino, R., & Trappe, V. (2008). Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Physical review letters, 100(18), 188102.
library(AIUQ) sim_bm = simulation(len_t=100,sz=100,sigma_bm=0.5) show(sim_bm) sam = SAM(sim_object = sim_bm) show(sam) modeled_Dqt = modeled_dqt(object=sam)
library(AIUQ) sim_bm = simulation(len_t=100,sz=100,sigma_bm=0.5) show(sim_bm) sam = SAM(sim_object = sim_bm) show(sam) modeled_Dqt = modeled_dqt(object=sam)
Compute modeled intermediate scattering function (ISF) using object of
SAM
class.
modeled_isf(object, index_q = NA)
modeled_isf(object, index_q = NA)
object |
an S4 object of class |
index_q |
wavevector range used for computing ISF |
A matrix of modeled intermediate scattering function with dimension
len_q
by len_t-1
.
Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]
Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.
Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.
Cerbino, R., & Trappe, V. (2008). Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Physical review letters, 100(18), 188102.
library(AIUQ) sim_bm = simulation(len_t=100,sz=100,sigma_bm=0.5) show(sim_bm) sam = SAM(sim_object = sim_bm) show(sam) modeled_ISF = modeled_isf(object=sam)
library(AIUQ) sim_bm = simulation(len_t=100,sz=100,sigma_bm=0.5) show(sim_bm) sam = SAM(sim_object = sim_bm) show(sam) modeled_ISF = modeled_isf(object=sam)
Function to plot 2D intensity profile for a certain frame, default is to plot the first frame. Input can be a matrix (2D) or an array (3D).
plot_intensity( intensity, intensity_str = "T_SS_mat", frame = 1, sz = NA, title = NA, color = FALSE )
plot_intensity( intensity, intensity_str = "T_SS_mat", frame = 1, sz = NA, title = NA, color = FALSE )
intensity |
intensity profile |
intensity_str |
structure of the intensity profile, options from ('SST_array','S_ST_mat','T_SS_mat', 'SS_T_mat'). See 'Details'. |
frame |
frame index |
sz |
frame size of simulated image with default |
title |
main title of the plot. If |
color |
a logical evaluating to TRUE or FALSE indicating whether a colorful plot is generated |
By default intensity_str
is set to 'T_SS_mat', a time by spacespace
matrix, which is the structure of intensity profile obtained from
simulation
class. For intensity_str='SST_array'
, input intensity profile should be a
space by space by time array, which is the structure from loading a tif file.
For intensity_str='S_ST_mat'
, input intensity profile should be a
space by spacetime matrix. For
intensity_str='SS_T_mat'
,
input intensity profile should be a spacespace by time matrix.
2D plot in gray scale (or with color) of selected frame.
Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]
library(AIUQ) sim_bm = simulation(sz=100,len_t=100,sigma_bm=0.5) show(sim_bm) plot_intensity(sim_bm@intensity, sz=sim_bm@sz)
library(AIUQ) sim_bm = simulation(sz=100,len_t=100,sigma_bm=0.5) show(sim_bm) plot_intensity(sim_bm@intensity, sz=sim_bm@sz)
Function to plot estimated MSD with uncertainty from SAM
class, versus
true mean squared displacement(MSD) or given reference values.
plot_MSD(object, msd_truth = NA, title = NA, log10 = TRUE)
plot_MSD(object, msd_truth = NA, title = NA, log10 = TRUE)
object |
an S4 object of class |
msd_truth |
a vector/matrix of true MSD or reference MSD value,
default is |
title |
main title of the plot. If |
log10 |
a logical evaluating to TRUE or FALSE indicating whether a plot in log10 scale is generated |
A plot of estimated MSD with uncertainty versus truth/reference values.
Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]
Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.
Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.
library(AIUQ) ## Simulate BM and get estimated parameters with uncertainty using BM model # Simulation set.seed(1) sim_bm = simulation(sz=100,len_t=100,sigma_bm=0.5) show(sim_bm) # AIUQ method: fitting using BM model sam = SAM(sim_object=sim_bm, uncertainty=TRUE,AIUQ_thr=c(0.999,0)) show(sam) plot_MSD(object=sam, msd_truth=sam@msd_truth) #in log10 scale plot_MSD(object=sam, msd_truth=sam@msd_truth,log10=FALSE) #in real scale
library(AIUQ) ## Simulate BM and get estimated parameters with uncertainty using BM model # Simulation set.seed(1) sim_bm = simulation(sz=100,len_t=100,sigma_bm=0.5) show(sim_bm) # AIUQ method: fitting using BM model sam = SAM(sim_object=sim_bm, uncertainty=TRUE,AIUQ_thr=c(0.999,0)) show(sam) plot_MSD(object=sam, msd_truth=sam@msd_truth) #in log10 scale plot_MSD(object=sam, msd_truth=sam@msd_truth,log10=FALSE) #in real scale
Function to plot the particle trajectory after the simulation
class
has been constructed.
plot_traj(object, title = NA)
plot_traj(object, title = NA)
object |
an S4 object of class |
title |
main title of the plot. If |
2D plot of particle trajectory for a given simulation from simulation
class.
Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]
library(AIUQ) sim_bm = simulation(sz=100,len_t=100,sigma_bm=0.5) show(sim_bm) plot_traj(sim_bm)
library(AIUQ) sim_bm = simulation(sz=100,len_t=100,sigma_bm=0.5) show(sim_bm) plot_traj(sim_bm)
Fast parameter estimation in scattering analysis of microscopy, using either AIUQ or DDM method.
SAM( intensity = NA, intensity_str = "T_SS_mat", pxsz = 1, sz = c(NA, NA), mindt = 1, AIUQ_thr = c(1, 1), model_name = "BM", sigma_0_2_ini = NaN, param_initial = NA, num_optim = 1, msd_fn = NA, msd_grad_fn = NA, num_param = NA, uncertainty = FALSE, M = 50, sim_object = NA, msd_truth = NA, method = "AIUQ", index_q_AIUQ = NA, index_q_DDM = NA, message_out = TRUE, A_neg = "abs", square = FALSE, output_dqt = FALSE, output_isf = FALSE, output_modeled_isf = FALSE, output_modeled_dqt = FALSE )
SAM( intensity = NA, intensity_str = "T_SS_mat", pxsz = 1, sz = c(NA, NA), mindt = 1, AIUQ_thr = c(1, 1), model_name = "BM", sigma_0_2_ini = NaN, param_initial = NA, num_optim = 1, msd_fn = NA, msd_grad_fn = NA, num_param = NA, uncertainty = FALSE, M = 50, sim_object = NA, msd_truth = NA, method = "AIUQ", index_q_AIUQ = NA, index_q_DDM = NA, message_out = TRUE, A_neg = "abs", square = FALSE, output_dqt = FALSE, output_isf = FALSE, output_modeled_isf = FALSE, output_modeled_dqt = FALSE )
intensity |
intensity profile. See 'Details'. |
intensity_str |
structure of the intensity profile, options from ('SST_array','S_ST_mat','T_SS_mat'). See 'Details'. |
pxsz |
size of one pixel in unit of micron, 1 for simulated data |
sz |
frame size of the intensity profile in x and y directions, number of pixels contained in each frame equals sz_x by sz_y. |
mindt |
minimum lag time, 1 for simulated data |
AIUQ_thr |
threshold for wave number selection, numeric vector of two elements with values between 0 and 1. See 'Details'. |
model_name |
fitted model, options from ('BM','OU','FBM','OU+FBM', 'user_defined'), with Brownian motion as the default model. See 'Details'. |
sigma_0_2_ini |
initial value for background noise. If NA, use minimum value of absolute square of intensity profile in reciprocal space. |
param_initial |
initial values for param estimation. |
num_optim |
number of optimization. |
msd_fn |
user defined mean squared displacement(MSD) structure, a
function of parameters and lag times. NA if |
msd_grad_fn |
gradient for user defined mean squared displacement
structure. If |
num_param |
number of parameters need to be estimated in the intermediate scattering function, need to be non-NA value for user_defined' model. |
uncertainty |
a logical evaluating to TRUE or FALSE indicating whether parameter uncertainty should be computed. |
M |
number of particles. See 'Details'. |
sim_object |
NA or an S4 object of class |
msd_truth |
true MSD or reference MSD value. |
method |
methods for parameter estimation, options from ('AIUQ','DDM_fixedAB','DDM_estAB'). |
index_q_AIUQ |
index range for wave number when using AIUQ method. See 'Details'. |
index_q_DDM |
index range for wave number when using DDM method. See 'Details'. |
message_out |
a logical evaluating to TRUE or FALSE indicating whether or not to output the message. |
A_neg |
controls modification for negative A(q), options from ('abs','zero'), with setting negative A(q) to its absolute value as the default. |
square |
a logical evaluating to TRUE or FALSE indicating whether or not to crop the original intensity profile into square image. |
output_dqt |
a logical evaluating to TRUE or FALSE indicating whether or not to compute observed dynamic image structure function(Dqt). |
output_isf |
a logical evaluating to TRUE or FALSE indicating whether or not to compute empirical intermediate scattering function(ISF). |
output_modeled_isf |
a logical evaluating to TRUE or FALSE indicating whether or not to compute modeled intermediate scattering function(ISF). |
output_modeled_dqt |
a logical evaluating to TRUE or FALSE indicating whether or not to compute modeled dynamic image structure function(Dqt). |
For simulated data using simulation
in AIUQ package, intensity
will be automatically extracted from simulation
class.
By default intensity_str
is set to 'T_SS_mat', a time by spacespace
matrix, which is the structure of intensity profile obtained from
simulation
class. For intensity_str='SST_array'
, input intensity profile should be a
space by space by time array, which is the structure from loading a tif file.
For intensity_str='S_ST_mat'
, input intensity profile should be a
space by spacetime matrix.
By default AIUQ_thr
is set to c(1,1)
, uses information from all
complete q rings. The first element affects maximum wave number selected,
and second element controls minimum proportion of wave number selected. By
setting 1 for the second element, if maximum wave number selected is less
than the wave number length, then maximum wave number selected is coerced to
use all wave number unless user defined another index range through index_q_AIUQ
.
If model_name
equals 'user_defined', or NA (will coerced to
'user_defined'), then msd_fn
and num_param
need to be provided
for parameter estimation.
Number of particles M
is set to 50 or automatically extracted from
simulation
class for simulated data using simulation
in AIUQ
package.
By default, using all wave vectors from complete q ring, unless user defined
index range through index_q_AIUQ
or index_q_DDM
.
Returns an S4 object of class SAM
.
Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]
Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.
Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.
Cerbino, R., & Trappe, V. (2008). Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Physical review letters, 100(18), 188102.
library(AIUQ) # Example 1: Estimation for simulated data sim_bm = simulation(len_t=100,sz=100,sigma_bm=0.5) show(sim_bm) sam = SAM(sim_object = sim_bm) show(sam)
library(AIUQ) # Example 1: Estimation for simulated data sim_bm = simulation(len_t=100,sz=100,sigma_bm=0.5) show(sim_bm) sam = SAM(sim_object = sim_bm) show(sam)
S4 class for fast parameter estimation in scattering analysis of microscopy,
using either AIUQ
or DDM
method.
pxsz
numeric. Size of one pixel in unit of micron with default value 1.
mindt
numeric. Minimum lag time with default value 1.
sz
vector. Frame size of the intensity profile in x and y directions, number of pixels contained in each frame equals sz_x by sz_y.
len_t
integer. Number of time steps.
len_q
integer. Number of wave vector.
q
vector. Wave vector in unit of um^-1.
d_input
vector. Sequence of lag times.
B_est_ini
numeric. Estimation of B. This parameter is determined by the noise in the system. See 'References'.
A_est_ini
vector. Estimation of A(q). Note this parameter is determined by the properties of the imaged material and imaging optics. See 'References'.
I_o_q_2_ori
vector. Absolute square of Fourier transformed intensity profile, ensemble over time.
q_ori_ring_loc_unique_index
list. List of location index of non-duplicate values for each q ring.
model_name
character. Fitted model, options from ('BM','OU','FBM','OU+FBM', 'user_defined').
param_est
vector. Estimated parameters contained in MSD.
sigma_2_0_est
numeric. Estimated variance of background noise.
msd_est
vector. Estimated MSD.
uncertainty
logical. A logical evaluating to TRUE or FALSE indicating whether parameter uncertainty should be computed.
msd_lower
vector. Lower bound of 95% confidence interval of MSD.
msd_upper
vector. Upper bound of 95% confidence interval of MSD.
msd_truth
vector. True MSD or reference MSD value.
sigma_2_0_truth
vector. True variance of background noise, non NA for
simulated data using simulation
.
param_truth
vector. True parameters used to construct MSD, non NA for
simulated data using simulation
.
index_q
vector. Selected index of wave vector.
Dqt
matrix. Dynamic image structure function D(q,delta t).
ISF
matrix. Empirical intermediate scattering function f(q,delta t).
I_q
matrix. Fourier transformed intensity profile with structure 'SS_T_mat'.
AIC
numeric. Akaike information criterion score.
mle
numeric. Maximum log likelihood value.
param_uq_range
matrix. 95% confidence interval for estimated parameters.
modeled_Dqt
matrix. Modeled dynamic image structure function D(q,delta t).
modeled_ISF
matrix. Modeled intermediate scattering function f(q,delta t).
Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]
Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.
Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.
Cerbino, R., & Trappe, V. (2008). Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Physical review letters, 100(18), 188102.
Function to print the aniso_SAM
class object after the
aniso_SAM
model has been constructed.
show.aniso_sam(object)
show.aniso_sam(object)
object |
an S4 object of class |
Show a list of important parameters in class aniso_SAM
.
Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]
Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.
Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.
library(AIUQ) ## Simulate BM and get estimated parameters using BM model # Simulation aniso_sim_bm = aniso_simulation(sz=100,len_t=100,sigma_bm=c(0.5,0.3)) show(aniso_sim_bm) # AIUQ method: fitting using BM model aniso_sam = aniso_SAM(sim_object=aniso_sim_bm, AIUQ_thr=c(0.99,0)) show(aniso_sam)
library(AIUQ) ## Simulate BM and get estimated parameters using BM model # Simulation aniso_sim_bm = aniso_simulation(sz=100,len_t=100,sigma_bm=c(0.5,0.3)) show(aniso_sim_bm) # AIUQ method: fitting using BM model aniso_sam = aniso_SAM(sim_object=aniso_sim_bm, AIUQ_thr=c(0.99,0)) show(aniso_sam)
Function to print the aniso_simulation
class object after the
aniso_simulation
model has been constructed.
show.aniso_simulation(object)
show.aniso_simulation(object)
object |
an S4 object of class |
Show a list of important parameters in class aniso_simulation
.
Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]
Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.
Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.
library(AIUQ) # Simulate simple diffusion for 100 images with 100 by 100 pixels aniso_sim_bm = aniso_simulation(sz=100,len_t=100,sigma_bm=c(0.5,0.1)) show(aniso_sim_bm)
library(AIUQ) # Simulate simple diffusion for 100 images with 100 by 100 pixels aniso_sim_bm = aniso_simulation(sz=100,len_t=100,sigma_bm=c(0.5,0.1)) show(aniso_sim_bm)
Function to print the SAM
class object after the SAM
model has
been constructed.
show.sam(object)
show.sam(object)
object |
an S4 object of class |
Show a list of important parameters in class SAM
.
Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]
Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.
Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.
library(AIUQ) ## Simulate BM and get estimated parameters using BM model # Simulation sim_bm = simulation(sz=100,len_t=100,sigma_bm=0.5) show(sim_bm) # AIUQ method: fitting using BM model sam = SAM(sim_object=sim_bm) show(sam)
library(AIUQ) ## Simulate BM and get estimated parameters using BM model # Simulation sim_bm = simulation(sz=100,len_t=100,sigma_bm=0.5) show(sim_bm) # AIUQ method: fitting using BM model sam = SAM(sim_object=sim_bm) show(sam)
Function to print the simulation
class object after the simulation
model has been constructed.
show.simulation(object)
show.simulation(object)
object |
an S4 object of class |
Show a list of important parameters in class simulation
.
Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]
Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.
Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.
library(AIUQ) # Simulate simple diffusion for 100 images with 100 by 100 pixels sim_bm = simulation(sz=100,len_t=100,sigma_bm=0.5) show(sim_bm)
library(AIUQ) # Simulate simple diffusion for 100 images with 100 by 100 pixels sim_bm = simulation(sz=100,len_t=100,sigma_bm=0.5) show(sim_bm)
Simulate 2D particle movement from a user selected stochastic process, and output intensity profiles.
simulation( sz = c(200, 200), len_t = 200, M = 50, model_name = "BM", noise = "gaussian", I0 = 20, Imax = 255, pos0 = matrix(NaN, nrow = M, ncol = 2), rho = 0.95, H = 0.3, sigma_p = 2, sigma_bm = 1, sigma_ou = 2, sigma_fbm = 2 )
simulation( sz = c(200, 200), len_t = 200, M = 50, model_name = "BM", noise = "gaussian", I0 = 20, Imax = 255, pos0 = matrix(NaN, nrow = M, ncol = 2), rho = 0.95, H = 0.3, sigma_p = 2, sigma_bm = 1, sigma_ou = 2, sigma_fbm = 2 )
sz |
frame size of simulated image with default |
len_t |
number of time steps with default 200. |
M |
number of particles with default 50. |
model_name |
stochastic process simulated, options from ('BM','OU','FBM','OU+FBM'), with default 'BM'. |
noise |
background noise, options from ('uniform','gaussian'), with default 'gaussian'. |
I0 |
background intensity, value between 0 and 255, with default 20. |
Imax |
maximum intensity at the center of the particle, value between 0 and 255, with default 255. |
pos0 |
initial position for M particles, matrix with dimension M by 2. |
rho |
correlation between successive step and previous step in O-U process, value between 0 and 1, with default 0.95. |
H |
Hurst parameter of fractional Brownian Motion, value between 0 and 1, with default 0.3. |
sigma_p |
radius of the spherical particle (3sigma_p), with default 2. |
sigma_bm |
distance moved per time step in Brownian Motion, with default 1. |
sigma_ou |
distance moved per time step in Ornstein–Uhlenbeck process, with default 2. |
sigma_fbm |
distance moved per time step in fractional Brownian Motion, with default 2. |
Returns an S4 object of class simulation
.
Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]
Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.
Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.
Cerbino, R., & Trappe, V. (2008). Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Physical review letters, 100(18), 188102.
library(AIUQ) # ------------------------------------------------- # Example 1: Simple diffusion for 200 images with # 200 by 200 pixels and 50 particles # ------------------------------------------------- sim_bm = simulation() show(sim_bm) # ------------------------------------------------- # Example 2: Simple diffusion for 100 images with # 100 by 100 pixels and slower speed # ------------------------------------------------- sim_bm = simulation(sz=100,len_t=100,sigma_bm=0.5) show(sim_bm) # ------------------------------------------------- # Example 3: Ornstein-Uhlenbeck process # ------------------------------------------------- sim_ou = simulation(model_name="OU") show(sim_ou)
library(AIUQ) # ------------------------------------------------- # Example 1: Simple diffusion for 200 images with # 200 by 200 pixels and 50 particles # ------------------------------------------------- sim_bm = simulation() show(sim_bm) # ------------------------------------------------- # Example 2: Simple diffusion for 100 images with # 100 by 100 pixels and slower speed # ------------------------------------------------- sim_bm = simulation(sz=100,len_t=100,sigma_bm=0.5) show(sim_bm) # ------------------------------------------------- # Example 3: Ornstein-Uhlenbeck process # ------------------------------------------------- sim_ou = simulation(model_name="OU") show(sim_ou)
S4 class for 2D particle movement simulation.
intensity
should has structure 'T_SS_mat', matrix with dimension
len_t
by sz
sz
.
pos
should be the position matrix with dimension
M
len_t
. See bm_particle_intensity
,
ou_particle_intensity
, fbm_particle_intensity
,
fbm_ou_particle_intensity
.
sz
vector. Frame size of the intensity profile, number of pixels
contained in each frame equals sz[1]
by sz[2]
.
len_t
integer. Number of time steps.
noise
character. Background noise, options from ('uniform','gaussian').
model_name
character. Simulated stochastic process, options from ('BM','OU','FBM','OU+FBM').
M
integer. Number of particles.
pxsz
numeric. Size of one pixel in unit of micron, 1 for simulated data.
mindt
numeric. Minimum lag time, 1 for simulated data.
pos
matrix. Position matrix for particle trajectory, see 'Details'.
intensity
matrix. Filled intensity profile, see 'Details'.
num_msd
vector. Numerical mean squared displacement (MSD).
param
vector. Parameters for simulated stochastic process.
theor_msd
vector. Theoretical MSD.
sigma_2_0
vector. Variance of background noise.
Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]
Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.
Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.
Cerbino, R., & Trappe, V. (2008). Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Physical review letters, 100(18), 188102.