Package 'AIUQ'

Title: Ab Initio Uncertainty Quantification
Description: Uncertainty quantification and inverse estimation by probabilistic generative models from the beginning of the data analysis. An example is a Fourier basis method for inverse estimation in scattering analysis of microscopy videos. It does not require specifying a certain range of Fourier bases and it substantially reduces computational cost via the generalized Schur algorithm. See the reference: Mengyang Gu, Yue He, Xubo Liu and Yimin Luo (2023), <doi:10.48550/arXiv.2309.02468>.
Authors: Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]
Maintainer: Mengyang Gu <[email protected]>
License: GPL (>= 3)
Version: 0.5.3
Built: 2024-10-31 03:06:12 UTC
Source: https://github.com/cran/AIUQ

Help Index


Scattering analysis of microscopy for anisotropic processes

Description

Fast parameter estimation in scattering analysis of microscopy for anisotropic processes, using AIUQ method.

Usage

aniso_SAM(
  intensity = NA,
  intensity_str = "T_SS_mat",
  pxsz = 1,
  sz = c(NA, NA),
  mindt = 1,
  AIUQ_thr = c(1, 1),
  model_name = "BM",
  sigma_0_2_ini = NaN,
  param_initial = NA,
  num_optim = 1,
  msd_fn = NA,
  msd_grad_fn = NA,
  num_param = NA,
  uncertainty = FALSE,
  M = 50,
  sim_object = NA,
  msd_truth = NA,
  method = "AIUQ",
  index_q_AIUQ = NA,
  message_out = TRUE,
  square = FALSE
)

Arguments

intensity

intensity profile. See 'Details'.

intensity_str

structure of the intensity profile, options from ('SST_array','S_ST_mat','T_SS_mat'). See 'Details'.

pxsz

size of one pixel in unit of micron, 1 for simulated data

sz

frame size of the intensity profile in x and y directions, number of pixels contained in each frame equals sz_x by sz_y.

mindt

minimum lag time, 1 for simulated data

AIUQ_thr

threshold for wave number selection, numeric vector of two elements with values between 0 and 1. See 'Details'.

model_name

fitted model, options from ('BM','OU','FBM','OU+FBM', 'user_defined'), with Brownian motion as the default model. See 'Details'.

sigma_0_2_ini

initial value for background noise. If NA, use minimum value of absolute square of intensity profile in reciprocal space.

param_initial

initial values for param estimation.

num_optim

number of optimization.

msd_fn

user defined mean squared displacement(MSD) structure, a function of parameters and lag times. NA if model_name is not 'user_defined'.

msd_grad_fn

gradient for user defined mean squared displacement structure. If NA, then numerical gradient will be used for parameter estimation in 'user_defined' model.

num_param

number of parameters need to be estimated in the intermediate scattering function, need to be non-NA value for user_defined' model.

uncertainty

a logical evaluating to TRUE or FALSE indicating whether parameter uncertainty should be computed.

M

number of particles. See 'Details'.

sim_object

NA or an S4 object of class simulation.

msd_truth

true MSD or reference MSD value.

method

methods for parameter estimation, options from ('AIUQ', 'DDM').

index_q_AIUQ

index range for wave number when using AIUQ method. See 'Details'.

message_out

a logical evaluating to TRUE or FALSE indicating whether or not to output the message.

square

a logical evaluating to TRUE or FALSE indicating whether or not to crop the original intensity profile into square image.

Details

For simulated data using aniso_simulation in AIUQ package, intensity will be automatically extracted from aniso_simulation class.

By default intensity_str is set to 'T_SS_mat', a time by space×\timesspace matrix, which is the structure of intensity profile obtained from aniso_simulation class. For intensity_str='SST_array' , input intensity profile should be a space by space by time array, which is the structure from loading a tif file. For intensity_str='S_ST_mat', input intensity profile should be a space by space×\timestime matrix.

By default AIUQ_thr is set to c(1,1), uses information from all complete q rings. The first element affects maximum wave number selected, and second element controls minimum proportion of wave number selected. By setting 1 for the second element, if maximum wave number selected is less than the wave number length, then maximum wave number selected is coerced to use all wave number unless user defined another index range through index_q_AIUQ.

If model_name equals 'user_defined', or NA (will coerced to 'user_defined'), then msd_fn and num_param need to be provided for parameter estimation.

Number of particles M is set to 50 or automatically extracted from simulation class for simulated data using simulation in AIUQ package.

By default, using all wave vectors from complete q ring for both AIUQ, unless user defined index range through index_q_AIUQ.

Value

Returns an S4 object of class aniso_SAM.

Author(s)

Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]

References

Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.

Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.

Cerbino, R., & Trappe, V. (2008). Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Physical review letters, 100(18), 188102.

Examples

library(AIUQ)
# Example 1: Estimation for simulated data
set.seed(1)
aniso_sim = aniso_simulation(sz=100,len_t=100, model_name="BM",M=100,sigma_bm=c(0.5,0.3))
show(aniso_sim)
plot_traj(object=aniso_sim)
aniso_sam = aniso_SAM(sim_object=aniso_sim, model_name="BM",AIUQ_thr = c(0.999,0))
show(aniso_sam)
plot_MSD(aniso_sam,msd_truth = aniso_sam@msd_truth)

Anisotropic SAM class

Description

S4 class for fast parameter estimation in scattering analysis of microscopy for anisotropic processes, using either AIUQ or DDM method.

Slots

pxsz

numeric. Size of one pixel in unit of micron with default value 1.

mindt

numeric. Minimum lag time with default value 1.

sz

vector. Frame size of the intensity profile in x and y directions, number of pixels contained in each frame equals sz_x by sz_y.

len_t

integer. Number of time steps.

len_q

integer. Number of wave vector.

q

vector. Wave vector in unit of um^-1.

d_input

vector. Sequence of lag times.

B_est_ini

numeric. Estimation of B. This parameter is determined by the noise in the system. See 'References'.

A_est_ini

vector. Estimation of A(q). Note this parameter is determined by the properties of the imaged material and imaging optics. See 'References'.

I_o_q_2_ori

vector. Absolute square of Fourier transformed intensity profile, ensemble over time.

q_ori_ring_loc_unique_index

list. List of location index of non-duplicate values for each q ring.

model_name

character. Fitted model, options from ('BM','OU','FBM','OU+FBM', 'user_defined').

param_est

matrix. Estimated parameters contained in MSD.

sigma_2_0_est

vector. Estimated variance of background noise.

msd_est

matrix. Estimated MSD.

uncertainty

logical. A logical evaluating to TRUE or FALSE indicating whether parameter uncertainty should be computed.

msd_truth

matrix. True MSD or reference MSD value.

sigma_2_0_truth

vector. True variance of background noise, non NA for simulated data using simulation.

param_truth

matrix. True parameters used to construct MSD, non NA for simulated data using aniso_simulation.

index_q

vector. Selected index of wave vector.

I_q

matrix. Fourier transformed intensity profile with structure 'SS_T_mat'.

AIC

numeric. Akaike information criterion score.

mle

numeric. Maximum log likelihood value.

msd_x_lower

vector. Lower bound of 95% confidence interval of MSD in x directions.

msd_x_upper

vector. Upper bound of 95% confidence interval of MSD in x directions.

msd_y_lower

vector. Lower bound of 95% confidence interval of MSD in y directions.

msd_y_upper

vector. Upper bound of 95% confidence interval of MSD in y directions.

param_uq_range

matrix. 95% confidence interval for estimated parameters.

Author(s)

Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]

References

Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.

Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.

Cerbino, R., & Trappe, V. (2008). Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Physical review letters, 100(18), 188102.


Simulate anisotropic 2D particle movement

Description

Simulate anisotropic 2D particle movement from a user selected stochastic process, and output intensity profiles.

Usage

aniso_simulation(
  sz = c(200, 200),
  len_t = 200,
  M = 50,
  model_name = "BM",
  noise = "gaussian",
  I0 = 20,
  Imax = 255,
  pos0 = matrix(NaN, nrow = M, ncol = 2),
  rho = c(0.95, 0.9),
  H = c(0.4, 0.3),
  sigma_p = 2,
  sigma_bm = c(1, 0.5),
  sigma_ou = c(2, 1.5),
  sigma_fbm = c(2, 1.5)
)

Arguments

sz

frame size of simulated image with default c(200,200).

len_t

number of time steps with default 200.

M

number of particles with default 50.

model_name

stochastic process simulated, options from ('BM','OU','FBM','OU+FBM'), with default 'BM'.

noise

background noise, options from ('uniform','gaussian'), with default 'gaussian'.

I0

background intensity, value between 0 and 255, with default 20.

Imax

maximum intensity at the center of the particle, value between 0 and 255, with default 255.

pos0

initial position for M particles, matrix with dimension M by 2.

rho

correlation between successive step and previous step in O-U process, in x, y-directions. A vector of length 2 with values between 0 and 1, default c(0.95,0.9).

H

Hurst parameter of fractional Brownian Motion, in x, y-directions. A vector of length 2, value between 0 and 1, default c(0.4,0.3).

sigma_p

radius of the spherical particle (3sigma_p), with default 2.

sigma_bm

distance moved per time step of Brownian Motion, in x,y-directions. A vector of length 2 with default c(1,0.5).

sigma_ou

distance moved per time step of Ornstein–Uhlenbeck process, in x, y-directions. A vector of length 2 with default c(2,1.5).

sigma_fbm

distance moved per time step of fractional Brownian Motion, in x, y-directions. A vector of length 2 with default c(2,1.5).

Value

Returns an S4 object of class anisotropic_simulation.

Author(s)

Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]

References

Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.

Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.

Cerbino, R., & Trappe, V. (2008). Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Physical review letters, 100(18), 188102.

Examples

library(AIUQ)
# -------------------------------------------------
# Example 1: Simple diffusion for 200 images with
#            200 by 200 pixels and 50 particles
# -------------------------------------------------
aniso_sim_bm = aniso_simulation()
show(aniso_sim_bm)

# -------------------------------------------------
# Example 2: Simple diffusion for 100 images with
#            100 by 100 pixels and slower speed
# -------------------------------------------------
aniso_sim_bm = aniso_simulation(sz=100,len_t=100,sigma_bm=c(0.5,0.1))
show(aniso_sim_bm)

# -------------------------------------------------
# Example 3: Ornstein-Uhlenbeck process
# -------------------------------------------------
aniso_sim_ou = aniso_simulation(model_name="OU")
show(aniso_sim_ou)

Anisotropic simulation class

Description

S4 class for anisotropic 2D particle movement simulation.

Details

intensity should has structure 'T_SS_mat', matrix with dimension len_t by sz×\timessz.

pos should be the position matrix with dimension M×\timeslen_t. See bm_particle_intensity, ou_particle_intensity, fbm_particle_intensity, fbm_ou_particle_intensity.

Slots

sz

vector. Frame size of the intensity profile, number of pixels contained in each frame equals sz[1] by sz[2].

len_t

integer. Number of time steps.

noise

character. Background noise, options from ('uniform','gaussian').

model_name

character. Simulated stochastic process, options from ('BM','OU','FBM','OU+FBM').

M

integer. Number of particles.

pxsz

numeric. Size of one pixel in unit of micron, 1 for simulated data.

mindt

numeric. Minimum lag time, 1 for simulated data.

pos

matrix. Position matrix for particle trajectory, see 'Details'.

intensity

matrix. Filled intensity profile, see 'Details'.

num_msd

matrix. Numerical mean squared displacement (MSD).

param

matrix. Parameters used to construct MSD.

theor_msd

matrix. Theoretical MSD.

sigma_2_0

vector. Variance of background noise.

Author(s)

Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]

References

Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.

Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.

Cerbino, R., & Trappe, V. (2008). Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Physical review letters, 100(18), 188102.


Compute observed dynamic image structure function

Description

Compute observed dynamic image structure function (Dqt) using object of SAM class.

Usage

get_dqt(object, index_q = NA)

Arguments

object

an S4 object of class SAM

index_q

wavevector range used for computing Dqt

Value

A matrix of observed dynamic image structure function with dimension len_q by len_t-1.

Author(s)

Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]

References

Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.

Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.

Cerbino, R., & Trappe, V. (2008). Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Physical review letters, 100(18), 188102.

Examples

## Not run: 
library(AIUQ)
sim_bm = simulation(len_t=100,sz=100,sigma_bm=0.5)
show(sim_bm)
sam = SAM(sim_object = sim_bm)
show(sam)
Dqt = get_dqt(object=sam)

## End(Not run)

Compute empirical intermediate scattering function

Description

Compute empirical intermediate scattering function (ISF) using object of SAM class.

Usage

get_isf(object, index_q = NA, msd_truth = NA)

Arguments

object

an S4 object of class SAM

index_q

wavevector range used for computing ISF

msd_truth

true or reference MSD

Value

A matrix of empirical intermediate scattering function with dimension len_q by len_t-1.

Author(s)

Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]

References

Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.

Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.

Cerbino, R., & Trappe, V. (2008). Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Physical review letters, 100(18), 188102.

Examples

## Not run: 
library(AIUQ)
sim_bm = simulation(len_t=100,sz=100,sigma_bm=0.5)
show(sim_bm)
sam = SAM(sim_object = sim_bm)
show(sam)
ISF = get_isf(object=sam)

## End(Not run)

Compute modeled dynamic image structure function

Description

Compute modeled dynamic image structure function (Dqt) using object of SAM class.

Usage

modeled_dqt(object, index_q = NA, uncertainty = FALSE)

Arguments

object

an S4 object of class SAM

index_q

wavevector range used for computing Dqt

uncertainty

logic evalution

Value

A matrix of modeled dynamic image structure function with dimension len_q by len_t-1.

Author(s)

Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]

References

Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.

Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.

Cerbino, R., & Trappe, V. (2008). Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Physical review letters, 100(18), 188102.

Examples

library(AIUQ)
sim_bm = simulation(len_t=100,sz=100,sigma_bm=0.5)
show(sim_bm)
sam = SAM(sim_object = sim_bm)
show(sam)
modeled_Dqt = modeled_dqt(object=sam)

Compute modeled intermediate scattering function

Description

Compute modeled intermediate scattering function (ISF) using object of SAM class.

Usage

modeled_isf(object, index_q = NA)

Arguments

object

an S4 object of class SAM

index_q

wavevector range used for computing ISF

Value

A matrix of modeled intermediate scattering function with dimension len_q by len_t-1.

Author(s)

Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]

References

Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.

Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.

Cerbino, R., & Trappe, V. (2008). Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Physical review letters, 100(18), 188102.

Examples

library(AIUQ)
sim_bm = simulation(len_t=100,sz=100,sigma_bm=0.5)
show(sim_bm)
sam = SAM(sim_object = sim_bm)
show(sam)
modeled_ISF = modeled_isf(object=sam)

Plot 2D intensity

Description

Function to plot 2D intensity profile for a certain frame, default is to plot the first frame. Input can be a matrix (2D) or an array (3D).

Usage

plot_intensity(
  intensity,
  intensity_str = "T_SS_mat",
  frame = 1,
  sz = NA,
  title = NA,
  color = FALSE
)

Arguments

intensity

intensity profile

intensity_str

structure of the intensity profile, options from ('SST_array','S_ST_mat','T_SS_mat', 'SS_T_mat'). See 'Details'.

frame

frame index

sz

frame size of simulated image with default c(200,200).

title

main title of the plot. If NA, title is "intensity profile for frame n" with n being the frame index in frame.

color

a logical evaluating to TRUE or FALSE indicating whether a colorful plot is generated

Details

By default intensity_str is set to 'T_SS_mat', a time by space×\timesspace matrix, which is the structure of intensity profile obtained from simulation class. For intensity_str='SST_array' , input intensity profile should be a space by space by time array, which is the structure from loading a tif file. For intensity_str='S_ST_mat', input intensity profile should be a space by space×\timestime matrix. For intensity_str='SS_T_mat', input intensity profile should be a space×\timesspace by time matrix.

Value

2D plot in gray scale (or with color) of selected frame.

Author(s)

Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]

Examples

library(AIUQ)
sim_bm = simulation(sz=100,len_t=100,sigma_bm=0.5)
show(sim_bm)
plot_intensity(sim_bm@intensity, sz=sim_bm@sz)

Plot estimated MSD with uncertainty from SAM class

Description

Function to plot estimated MSD with uncertainty from SAM class, versus true mean squared displacement(MSD) or given reference values.

Usage

plot_MSD(object, msd_truth = NA, title = NA, log10 = TRUE)

Arguments

object

an S4 object of class SAM

msd_truth

a vector/matrix of true MSD or reference MSD value, default is NA

title

main title of the plot. If NA, title is "model_name" with model_name being a field in SAM class representing fitted model.

log10

a logical evaluating to TRUE or FALSE indicating whether a plot in log10 scale is generated

Value

A plot of estimated MSD with uncertainty versus truth/reference values.

Author(s)

Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]

References

Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.

Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.

Examples

library(AIUQ)

## Simulate BM and get estimated parameters with uncertainty using BM model
# Simulation
set.seed(1)
sim_bm = simulation(sz=100,len_t=100,sigma_bm=0.5)
show(sim_bm)

# AIUQ method: fitting using BM model
sam = SAM(sim_object=sim_bm, uncertainty=TRUE,AIUQ_thr=c(0.999,0))
show(sam)

plot_MSD(object=sam, msd_truth=sam@msd_truth) #in log10 scale
plot_MSD(object=sam, msd_truth=sam@msd_truth,log10=FALSE) #in real scale

Plot 2D particle trajectory

Description

Function to plot the particle trajectory after the simulation class has been constructed.

Usage

plot_traj(object, title = NA)

Arguments

object

an S4 object of class simulation

title

main title of the plot. If NA, title is "model_name with M particles" with model_name and M being field in simulation class.

Value

2D plot of particle trajectory for a given simulation from simulation class.

Author(s)

Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]

Examples

library(AIUQ)
sim_bm = simulation(sz=100,len_t=100,sigma_bm=0.5)
show(sim_bm)
plot_traj(sim_bm)

Scattering analysis of microscopy

Description

Fast parameter estimation in scattering analysis of microscopy, using either AIUQ or DDM method.

Usage

SAM(
  intensity = NA,
  intensity_str = "T_SS_mat",
  pxsz = 1,
  sz = c(NA, NA),
  mindt = 1,
  AIUQ_thr = c(1, 1),
  model_name = "BM",
  sigma_0_2_ini = NaN,
  param_initial = NA,
  num_optim = 1,
  msd_fn = NA,
  msd_grad_fn = NA,
  num_param = NA,
  uncertainty = FALSE,
  M = 50,
  sim_object = NA,
  msd_truth = NA,
  method = "AIUQ",
  index_q_AIUQ = NA,
  index_q_DDM = NA,
  message_out = TRUE,
  A_neg = "abs",
  square = FALSE,
  output_dqt = FALSE,
  output_isf = FALSE,
  output_modeled_isf = FALSE,
  output_modeled_dqt = FALSE
)

Arguments

intensity

intensity profile. See 'Details'.

intensity_str

structure of the intensity profile, options from ('SST_array','S_ST_mat','T_SS_mat'). See 'Details'.

pxsz

size of one pixel in unit of micron, 1 for simulated data

sz

frame size of the intensity profile in x and y directions, number of pixels contained in each frame equals sz_x by sz_y.

mindt

minimum lag time, 1 for simulated data

AIUQ_thr

threshold for wave number selection, numeric vector of two elements with values between 0 and 1. See 'Details'.

model_name

fitted model, options from ('BM','OU','FBM','OU+FBM', 'user_defined'), with Brownian motion as the default model. See 'Details'.

sigma_0_2_ini

initial value for background noise. If NA, use minimum value of absolute square of intensity profile in reciprocal space.

param_initial

initial values for param estimation.

num_optim

number of optimization.

msd_fn

user defined mean squared displacement(MSD) structure, a function of parameters and lag times. NA if model_name is not 'user_defined'.

msd_grad_fn

gradient for user defined mean squared displacement structure. If NA, then numerical gradient will be used for parameter estimation in 'user_defined' model.

num_param

number of parameters need to be estimated in the intermediate scattering function, need to be non-NA value for user_defined' model.

uncertainty

a logical evaluating to TRUE or FALSE indicating whether parameter uncertainty should be computed.

M

number of particles. See 'Details'.

sim_object

NA or an S4 object of class simulation.

msd_truth

true MSD or reference MSD value.

method

methods for parameter estimation, options from ('AIUQ','DDM_fixedAB','DDM_estAB').

index_q_AIUQ

index range for wave number when using AIUQ method. See 'Details'.

index_q_DDM

index range for wave number when using DDM method. See 'Details'.

message_out

a logical evaluating to TRUE or FALSE indicating whether or not to output the message.

A_neg

controls modification for negative A(q), options from ('abs','zero'), with setting negative A(q) to its absolute value as the default.

square

a logical evaluating to TRUE or FALSE indicating whether or not to crop the original intensity profile into square image.

output_dqt

a logical evaluating to TRUE or FALSE indicating whether or not to compute observed dynamic image structure function(Dqt).

output_isf

a logical evaluating to TRUE or FALSE indicating whether or not to compute empirical intermediate scattering function(ISF).

output_modeled_isf

a logical evaluating to TRUE or FALSE indicating whether or not to compute modeled intermediate scattering function(ISF).

output_modeled_dqt

a logical evaluating to TRUE or FALSE indicating whether or not to compute modeled dynamic image structure function(Dqt).

Details

For simulated data using simulation in AIUQ package, intensity will be automatically extracted from simulation class.

By default intensity_str is set to 'T_SS_mat', a time by space×\timesspace matrix, which is the structure of intensity profile obtained from simulation class. For intensity_str='SST_array' , input intensity profile should be a space by space by time array, which is the structure from loading a tif file. For intensity_str='S_ST_mat', input intensity profile should be a space by space×\timestime matrix.

By default AIUQ_thr is set to c(1,1), uses information from all complete q rings. The first element affects maximum wave number selected, and second element controls minimum proportion of wave number selected. By setting 1 for the second element, if maximum wave number selected is less than the wave number length, then maximum wave number selected is coerced to use all wave number unless user defined another index range through index_q_AIUQ.

If model_name equals 'user_defined', or NA (will coerced to 'user_defined'), then msd_fn and num_param need to be provided for parameter estimation.

Number of particles M is set to 50 or automatically extracted from simulation class for simulated data using simulation in AIUQ package.

By default, using all wave vectors from complete q ring, unless user defined index range through index_q_AIUQ or index_q_DDM.

Value

Returns an S4 object of class SAM.

Author(s)

Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]

References

Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.

Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.

Cerbino, R., & Trappe, V. (2008). Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Physical review letters, 100(18), 188102.

Examples

library(AIUQ)
# Example 1: Estimation for simulated data
sim_bm = simulation(len_t=100,sz=100,sigma_bm=0.5)
show(sim_bm)
sam = SAM(sim_object = sim_bm)
show(sam)

SAM class

Description

S4 class for fast parameter estimation in scattering analysis of microscopy, using either AIUQ or DDM method.

Slots

pxsz

numeric. Size of one pixel in unit of micron with default value 1.

mindt

numeric. Minimum lag time with default value 1.

sz

vector. Frame size of the intensity profile in x and y directions, number of pixels contained in each frame equals sz_x by sz_y.

len_t

integer. Number of time steps.

len_q

integer. Number of wave vector.

q

vector. Wave vector in unit of um^-1.

d_input

vector. Sequence of lag times.

B_est_ini

numeric. Estimation of B. This parameter is determined by the noise in the system. See 'References'.

A_est_ini

vector. Estimation of A(q). Note this parameter is determined by the properties of the imaged material and imaging optics. See 'References'.

I_o_q_2_ori

vector. Absolute square of Fourier transformed intensity profile, ensemble over time.

q_ori_ring_loc_unique_index

list. List of location index of non-duplicate values for each q ring.

model_name

character. Fitted model, options from ('BM','OU','FBM','OU+FBM', 'user_defined').

param_est

vector. Estimated parameters contained in MSD.

sigma_2_0_est

numeric. Estimated variance of background noise.

msd_est

vector. Estimated MSD.

uncertainty

logical. A logical evaluating to TRUE or FALSE indicating whether parameter uncertainty should be computed.

msd_lower

vector. Lower bound of 95% confidence interval of MSD.

msd_upper

vector. Upper bound of 95% confidence interval of MSD.

msd_truth

vector. True MSD or reference MSD value.

sigma_2_0_truth

vector. True variance of background noise, non NA for simulated data using simulation.

param_truth

vector. True parameters used to construct MSD, non NA for simulated data using simulation.

index_q

vector. Selected index of wave vector.

Dqt

matrix. Dynamic image structure function D(q,delta t).

ISF

matrix. Empirical intermediate scattering function f(q,delta t).

I_q

matrix. Fourier transformed intensity profile with structure 'SS_T_mat'.

AIC

numeric. Akaike information criterion score.

mle

numeric. Maximum log likelihood value.

param_uq_range

matrix. 95% confidence interval for estimated parameters.

modeled_Dqt

matrix. Modeled dynamic image structure function D(q,delta t).

modeled_ISF

matrix. Modeled intermediate scattering function f(q,delta t).

Author(s)

Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]

References

Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.

Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.

Cerbino, R., & Trappe, V. (2008). Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Physical review letters, 100(18), 188102.


Show scattering analysis of microscopy for anisotropic processes (aniso_SAM) object

Description

Function to print the aniso_SAM class object after the aniso_SAM model has been constructed.

Usage

show.aniso_sam(object)

Arguments

object

an S4 object of class aniso_SAM

Value

Show a list of important parameters in class aniso_SAM.

Author(s)

Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]

References

Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.

Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.

Examples

library(AIUQ)

## Simulate BM and get estimated parameters using BM model
# Simulation
aniso_sim_bm = aniso_simulation(sz=100,len_t=100,sigma_bm=c(0.5,0.3))
show(aniso_sim_bm)

# AIUQ method: fitting using BM model
aniso_sam = aniso_SAM(sim_object=aniso_sim_bm, AIUQ_thr=c(0.99,0))
show(aniso_sam)

Show anisotropic simulation object

Description

Function to print the aniso_simulation class object after the aniso_simulation model has been constructed.

Usage

show.aniso_simulation(object)

Arguments

object

an S4 object of class aniso_simulation

Value

Show a list of important parameters in class aniso_simulation.

Author(s)

Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]

References

Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.

Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.

Examples

library(AIUQ)

# Simulate simple diffusion for 100 images with 100 by 100 pixels
aniso_sim_bm = aniso_simulation(sz=100,len_t=100,sigma_bm=c(0.5,0.1))
show(aniso_sim_bm)

Show scattering analysis of microscopy (SAM) object

Description

Function to print the SAM class object after the SAM model has been constructed.

Usage

show.sam(object)

Arguments

object

an S4 object of class SAM

Value

Show a list of important parameters in class SAM.

Author(s)

Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]

References

Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.

Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.

Examples

library(AIUQ)

## Simulate BM and get estimated parameters using BM model
# Simulation
sim_bm = simulation(sz=100,len_t=100,sigma_bm=0.5)
show(sim_bm)

# AIUQ method: fitting using BM model
sam = SAM(sim_object=sim_bm)
show(sam)

Show simulation object

Description

Function to print the simulation class object after the simulation model has been constructed.

Usage

show.simulation(object)

Arguments

object

an S4 object of class simulation

Value

Show a list of important parameters in class simulation.

Author(s)

Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]

References

Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.

Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.

Examples

library(AIUQ)

# Simulate simple diffusion for 100 images with 100 by 100 pixels
sim_bm = simulation(sz=100,len_t=100,sigma_bm=0.5)
show(sim_bm)

Simulate 2D particle movement

Description

Simulate 2D particle movement from a user selected stochastic process, and output intensity profiles.

Usage

simulation(
  sz = c(200, 200),
  len_t = 200,
  M = 50,
  model_name = "BM",
  noise = "gaussian",
  I0 = 20,
  Imax = 255,
  pos0 = matrix(NaN, nrow = M, ncol = 2),
  rho = 0.95,
  H = 0.3,
  sigma_p = 2,
  sigma_bm = 1,
  sigma_ou = 2,
  sigma_fbm = 2
)

Arguments

sz

frame size of simulated image with default c(200,200).

len_t

number of time steps with default 200.

M

number of particles with default 50.

model_name

stochastic process simulated, options from ('BM','OU','FBM','OU+FBM'), with default 'BM'.

noise

background noise, options from ('uniform','gaussian'), with default 'gaussian'.

I0

background intensity, value between 0 and 255, with default 20.

Imax

maximum intensity at the center of the particle, value between 0 and 255, with default 255.

pos0

initial position for M particles, matrix with dimension M by 2.

rho

correlation between successive step and previous step in O-U process, value between 0 and 1, with default 0.95.

H

Hurst parameter of fractional Brownian Motion, value between 0 and 1, with default 0.3.

sigma_p

radius of the spherical particle (3sigma_p), with default 2.

sigma_bm

distance moved per time step in Brownian Motion, with default 1.

sigma_ou

distance moved per time step in Ornstein–Uhlenbeck process, with default 2.

sigma_fbm

distance moved per time step in fractional Brownian Motion, with default 2.

Value

Returns an S4 object of class simulation.

Author(s)

Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]

References

Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.

Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.

Cerbino, R., & Trappe, V. (2008). Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Physical review letters, 100(18), 188102.

Examples

library(AIUQ)
# -------------------------------------------------
# Example 1: Simple diffusion for 200 images with
#            200 by 200 pixels and 50 particles
# -------------------------------------------------
sim_bm = simulation()
show(sim_bm)

# -------------------------------------------------
# Example 2: Simple diffusion for 100 images with
#            100 by 100 pixels and slower speed
# -------------------------------------------------
sim_bm = simulation(sz=100,len_t=100,sigma_bm=0.5)
show(sim_bm)

# -------------------------------------------------
# Example 3: Ornstein-Uhlenbeck process
# -------------------------------------------------
sim_ou = simulation(model_name="OU")
show(sim_ou)

Simulation class

Description

S4 class for 2D particle movement simulation.

Details

intensity should has structure 'T_SS_mat', matrix with dimension len_t by sz×\timessz.

pos should be the position matrix with dimension M×\timeslen_t. See bm_particle_intensity, ou_particle_intensity, fbm_particle_intensity, fbm_ou_particle_intensity.

Slots

sz

vector. Frame size of the intensity profile, number of pixels contained in each frame equals sz[1] by sz[2].

len_t

integer. Number of time steps.

noise

character. Background noise, options from ('uniform','gaussian').

model_name

character. Simulated stochastic process, options from ('BM','OU','FBM','OU+FBM').

M

integer. Number of particles.

pxsz

numeric. Size of one pixel in unit of micron, 1 for simulated data.

mindt

numeric. Minimum lag time, 1 for simulated data.

pos

matrix. Position matrix for particle trajectory, see 'Details'.

intensity

matrix. Filled intensity profile, see 'Details'.

num_msd

vector. Numerical mean squared displacement (MSD).

param

vector. Parameters for simulated stochastic process.

theor_msd

vector. Theoretical MSD.

sigma_2_0

vector. Variance of background noise.

Author(s)

Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]

References

Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.

Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.

Cerbino, R., & Trappe, V. (2008). Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Physical review letters, 100(18), 188102.